الدرجة الكلية: ١٠٠ درجة

جامعة الفرات - كلية العلوم - قسم الرياضيات سلم تصحيح امتحان مقرر التحليل العقدي (١) - السنة الثالثة الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤ / ٢٠٢٥

لسؤال الأول (٣٠ درجة):

ال لينا $w = \left| \frac{z+i}{1-iz} \right| = \left| \frac{(x+iy)+i}{1-i(x+iy)} \right| = \left| \frac{x+i(y+1)}{(1+y)-ix} \right|$ $= \frac{\left| x+i(y+1) \right|}{\left| (1+y)-ix \right|} = \frac{\sqrt{x^2 + (y+1)^2}}{\sqrt{(y+1)^2 + x^2}} = 1$ $\dot{y} = \frac{(x+i)(y+1)}{(y+1)} = \frac{\sqrt{x^2 + (y+1)^2}}{\sqrt{(y+1)^2 + x^2}} = 1$ $\dot{y} = \frac{(x+i)(y+1)}{(y+1)} + \frac{(x+i)(y+1)}{(y+1)^2 + x^2} = 1$ $\dot{y} = \frac{(x+i)(y+1)}{(y+1)} + \frac{(x+i)(y+1)}{(y+1)^2 + x^2} = 1$

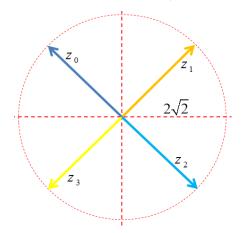
$$(-4)^{3/4} = \left[4e^{i(\pi+2\pi k)} \right]^{3/4} = \left[4 \right]^{3/4} \left[e^{i(\pi+2\pi k)} \right]^{3/4} = \left[4^{1/4} \right]^3 e^{i\left(\frac{3}{4}\pi + \frac{3}{2}\pi k\right)}$$

$$= \left[\sqrt{2} \right]^3 e^{i\left(\frac{3}{4}\pi + \frac{3}{2}\pi k\right)} = 2\sqrt{2} e^{i\left(\frac{3}{4}\pi + \frac{3}{2}\pi k\right)} \quad ; \quad k \in \mathbb{Z}$$

و لإيجاد القيم العقدية المختلفة لهذا المقدار السابق، نعطي قيم مختلفة للمقدار الصحيح $k \in \mathbb{Z}$ كما يلي

درجة

 $k = 0 \implies z_0 = 2\sqrt{2} e^{i\left(\frac{3}{4}\pi\right)}$ $k = 1 \implies$ $z_1 = 2\sqrt{2} e^{i\left(\frac{3}{4}\pi + \frac{3}{2}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{9}{4}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{1}{4}\pi\right)}$ $k = 2 \implies$ $z_2 = 2\sqrt{2} e^{i\left(\frac{3}{4}\pi + \frac{6}{2}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{15}{4}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{7}{4}\pi\right)}$ $k = 3 \implies$ $z_3 = 2\sqrt{2} e^{i\left(\frac{3}{4}\pi + \frac{9}{2}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{21}{4}\pi\right)} = 2\sqrt{2} e^{i\left(\frac{5}{4}\pi\right)}$



جامعة الفرات - كلية العلوم - قسم الرياضيات سلم تصحيح امتحان مقرر التحليل العقدي (١) - السنة الثالثة الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤/٢٠٢

السؤال الثاني (٠٤ درجة):

ه درجات	ن) لدينا من أجل أي عددين عقديين $z_1, z_2 \in \mathbb{C}$ ، يكون $ g(z_1) - g(z_2) = [af(z_1) + b] - [af(z_2) + b] = a[f(z_1) - f(z_2)] $ $ = a f(z_1) - f(z_2) = 1 \times z_1 - z_2 = z_1 - z_2 $ وبالتالي فإن التابع المعطى $ g(z) = 1 $
ه درجات	ان نلاحظ أن التابع $h(z)$ يكتب بالشكل $h(z)=a$ $f(z)+b$; $a=\frac{1}{f(1)-f(0)}$, $b=\frac{f(0)}{f(1)-f(0)}$ حيث أن $ a =\left \frac{1}{f(1)-f(0)}\right =\frac{1}{ f(1)-f(0) }=\frac{1}{ 1-0 }=1$ وبالتالي وحسب الطلب الأول، نستنتج أن التابع $h(z)$ هو تابع إيزومتري. كما نلاحظ أن $h(1)=\frac{f(1)-f(0)}{f(1)-f(0)}=1$, $h(0)=\frac{f(0)-f(0)}{f(1)-f(0)}=0$
ه درجات	انا) بملاحظة أن $ f(z) = f(z) - 0 = f(z) - f(0) = z - 0 = z $ $ 1 - f(z) = f(1) - f(z) = 1 - z \Rightarrow$

۱۰۰ درجة

•	الدرجة الكلية:	جامعة الفرات - كلية العلوم - قسم الرياضيات سلم تصحيح امتحان مقرر التحليل العقدي (١) - السنة الثالثة الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤ /٢٠٢	The state of the s	
	$\left 1 - f(z) \right ^2 = \left z \right ^2$	$\overline{1-z}^2 \Rightarrow [1-f(z)] \times [\overline{1-f(z)}] = (1-z)$	$)\times(\overline{1-z}) \Rightarrow$	
	$\left[1-f(z)\right]\times$	$1 - \overline{f(z)} = (1 - z) \times (1 - \overline{z}) \implies$		

$$\left| 1 - f(z) - \overline{f(z)} + f(z) \times \overline{f(z)} = 1 - z - \overline{z} + z \times \overline{z} \right| \Rightarrow$$

$$1 - \left[f\left(z\right) + \overline{f\left(z\right)} \right] + \left| f\left(z\right) \right|^{2} = 1 - \left(z + \overline{z}\right) + \left| z\right|^{2} \implies$$

وبما أن |z| = |z| و |f(z)| = 2 و |f(z)| = 2 و يالاختصار تصبح |f(z)| = |z|العلاقة السابقة بالشكل

$$\operatorname{Re}[f(z)] = \operatorname{Re}[z]$$

وباستخدام هذه العلاقة، نجد أن

$$\operatorname{Re}[f(i)] = \operatorname{Re}[i] = 0 \implies f(i) = y \mid i \implies |f(i)| = |y|$$

|y|=1 أن يكون |f(x)|=|x|. وبالمقارنة مع العلاقة الأخيرة نستنتج أن |f(i)|=|i|=1 $f(i) = \mp i$ ويكون $y = \mp i$. وبالتالى نستنتج أن

(iv) لدينا حسب الطلب السابق أن

$$|f(z)| = |z| \implies |f(z)|^2 = |z|^2 \implies$$

$$\left\{ \operatorname{Re}[f(z)] \right\}^{2} + \left\{ \operatorname{Im}[f(z)] \right\}^{2} = \left\{ \operatorname{Re}[z] \right\}^{2} + \left\{ \operatorname{Im}[z] \right\}^{2}$$

وبما أن $\operatorname{Re}[f(z)] = \operatorname{Re}[z]$ وبالاختصار نجد أن

$$\left\{ \operatorname{Im} \left[f \left(z \right) \right] \right\}^{2} = \left\{ \operatorname{Im} \left[z \right] \right\}^{2} \implies \operatorname{Im} \left[f \left(z \right) \right] = \mp \operatorname{Im} \left[z \right] \dots (*)$$

. $\operatorname{Im}[f(z)] = -\operatorname{Im}[z]$ ونرفض $\operatorname{Im}[f(z)] = \operatorname{Im}[z]$ فرضاً، فإننا نقبل $\operatorname{Im}[f(z)] = \operatorname{Im}[z]$ وبالتالى يصبح لدينا

$$f(z) = \operatorname{Re}[f(z)] + i \operatorname{Im}[f(z)] = \operatorname{Re}[z] + i \operatorname{Im}[z] = z$$

الدرجة الكلية: ١٠٠ درجة

جامعة الفرات - كلية العلوم - قسم الرياضيات سلم تصحيح امتحان مقرر التحليل العقدي (١) ـ السنة الثالثة الدورة الفصلية الثانية من العام الدراسي ٢٠٢٥ / ٢٠٢٥

 $\operatorname{Im} \left[f\left(z\right) \right] = \operatorname{Im} \left[z \right]$ ونرفض $\operatorname{Im} \left[f\left(z\right) \right] = -\operatorname{Im} \left[z \right]$ فرضاً، فإننا نقبل و $\operatorname{Im} \left[f\left(z\right) \right] = -\operatorname{Im} \left[z \right]$ ونرفض $\operatorname{Im} \left[f\left(z\right) \right] = -\operatorname{Im} \left[z \right]$ في العلاقة (*). وبالتالي يصبح لدينا $f(z) = \operatorname{Re}[f(z)] + i \operatorname{Im}[f(z)] = \operatorname{Re}[z] - i \operatorname{Im}[z] = \overline{z}$

السؤال الثالث (٣٠ درجة):

من أجل أي عدد عقدي z=x+i بيكن (z,y)+i بايكن (z,y)+i تابعاً تحليلياً ذو قير (i)

حقیقیة، عندئذِ یکون
$$v(x,y) = 0$$
 ی ویما أن التابع تحلیلي فإنه یحقق شرطي کوشي ریمان، أي أن در جات
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0 \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0 \end{cases} \Rightarrow u(x,y) = Const \Rightarrow f(z) = Const$$

(ii) نلاحظ أن

 $\begin{cases} \left\{ \frac{\partial u}{\partial x} = e^x Sin(y) \\ \frac{\partial u}{\partial y} = e^x Cos(y) \right\} \Rightarrow \begin{cases} \frac{\partial^2 u}{\partial x^2} = e^x Sin(y) \\ \frac{\partial^2 u}{\partial y^2} = -e^x Sin(y) \end{cases} \Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

وبالتالي فإن التابع $u\left(x\,,y\,
ight)\!=\!e^{\,x}Sin\left(y\,
ight)$ هو تابع توافقي. ولإيجاد المرافق التوافقي لهذا التابع نستخدم المعادلات

$$\begin{cases} \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = e^x Sin(y) \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -e^x Cos(y) \end{cases}$$
 (*)

عميد الكلية: د. نورس الهلامي

مدرس المقرر: أ. د. محمد شعيب العلى الدرجة الكلية: ١٠٠ درجة

١.

جامعة الفرات - كلية العلوم - قسم الرياضيات سلم تصحيح امتحان مقرر التحليل العقدي (١) - السنة الثالثة الدورة الفصلية الثانية من العام الدراسي ٢٠٢٥/٢٠٢

بمكاملة طرفي المعادلة الأولى بالنسبة للمتحول y، نجد أن

$$v = \int e^x Sin(y) dy + \phi(x) \implies$$

$$v = -e^{x}Cos(y) + \phi(x)$$
 (**)

وباشتقاق الطرفين جزئياً بالنسبة للمتحول x والتعويض في المعادلة الثانية من (*)، نجد أن

$$-e^{x}Cos(y) + \phi'(x) = -e^{x}Cos(y) \Rightarrow \phi'(x) = 0 \Rightarrow \phi(x) = 0$$

نعوض في المعادلة (* *)، لنجد أن

$$v = -e^{x}Cos(y)$$

وبالتالي فإن التابع التحليلي المطلوب هو

$$f(z) = u + iv = e^{x} Sin(y) - i e^{x} Cos(y)$$

$$= e^{x} \left[Sin(y) - i Cos(y) \right] = -i e^{x} \left[Cos(y) + i Sin(y) \right]$$

$$= -i e^{x} e^{iy} = -i e^{x+iy} = -i e^{z}$$

انتهى سلم التصحيح (خمس صفحات)

عميد الكلية: د. نورس الهلامي

مدرس المقرر: أ. د. محمد شعيب العلي